Enrollm.ent No:	Exam Seat No:

C.U.SHAH UNIVERSITY

Summer Examination-2017

Subject Name: Differential and Integral Calculus

Subject Code: 4SC04MTC1 Branch: B.Sc.(Mathematics, Physics)

Semester: 4 Date: 15/04/2017 Time: 10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q.1	Attempt the following questions:	(14)
a)	Define: Gradient of the scalar field.	(01)
a)		(01)
ы	For change of variable if the constant limits are of x then type of strip should	(01)
b)	be	
	(a) horizontal (b) Vertical (c) Oblique (d) None of These	
c)	True/False: Curvature of straight line is zero.	(01)
d)	$\int_{0}^{2\pi} \int_{0}^{4} r dr d\theta = \dots$	(01)
	(a) 16π (b) 8π (c) 4π (d) none of these	
e)	Define: Unit vector.	(01)
f)	True/False: The gradient of a scalar point is always vector quantity.	(01)
g)	If $\varphi = xyz$, the value of $ grad \varphi $ at the point (1,2,-1) is	(01)
h)	True/False: Radius of curvature is not always positive.	(01)
i)	Define: solenoidal vector.	(01)
,	2 r	(01)
j)	$\iint_{1} y dx dy = \dots$ (a) $\frac{3x}{2}$ (b) $\frac{7}{6}$ (c) $\frac{6}{7}$ (d) None of these	
	$(a) \frac{1}{2} (b) = (c) \frac{1}{2} (d)$ None of these	

- k) True/False: In partial differential equations number of independent variables are not more than one. (01)
- 1) True/False: In a Double integral outer limit is always constant. (01)
- **m**) If $J = \frac{\partial(u, v)}{\partial(x, y)} & J' = \frac{\partial(x, y)}{\partial(u, v)}$. Then JJ'=......
- (a) 1 (b) -1 (c) 0 (d) None of these **n**) Define: Curvature. (01)

Attempt any four questions from Q-2 to Q-8 Q.2 Attempt all questions

۷.4	Attempt an questions	(14)
a)	Define Directional Derivative of function. Find the Directional derivative of	(05)
	$\phi = xy^2 + yz^3$ at the point $(2, -1, 1)$ in the direction of the normal to the surface	
	$x \log z - y^2 = 4$ at $(-1, 2, 1)$.	

Find the value of
$$a$$
 if the vector $(ax^2y + yz)i + (xy^2 - xz^2)j +$ (05) $(2xyz - 2x^2y^2)k$ has zero divergence. Find the *curl* of the above vector which has zero divergent.

c) Evaluate
$$\int_{0}^{a} \int_{0}^{x+y} \int_{0}^{x+y+z} dz dy dx$$
. (04)

Q.3 Attempt all questions

a) Evaluate
$$\nabla e^{r^2}$$
; where $\vec{r} = xi + yj + zk \& r = |\vec{r}|$. (05)

(14)

(14)

(04)

(14)

(14)

b) Evaluate
$$\iint_R x^2 dA$$
, where R is region bounded by $xy = 16$ and the lines $y = x, y = 0, x = 8$. (05)

Eliminate the arbitrary function from the equation
$$z = xy + f(xy)$$
 (04)

Q.4 Attempt all questions

a) Sketch the region of given integration, change the order of integration and evaluate the integral $\int_{0}^{2} \int_{0}^{4-x^2} \frac{xe^{2y}}{4-y} dy dx.$ (05)

b) Solve
$$(y^2 + z^2)p - xyq + xz = 0.$$
 (05)

c) Show that the curve $y = x^4$ is concave upward at the origin.

Q.5 Attempt all questions

- a) Evaluate $\iint_R (x+y)^2 dxdy$, where R is the region bounded by x+y=0, x+y=1, 2x-y=0, 2x-y=3, using transformation u=x+y, v=2x-y
- **b)** Define curl of a vector field. Show that a fluid motion is given by $v = (y \sin z \sin x)i + (x \sin z + 2yz)j + (xy \cos z + y^2)k \text{ is Irrotational.}$
- c) Show that the curve $y = e^x$ is everywhere concave upward. (03)

Q.6 Attempt all questions

- a) Derive radius of curvature for cartesian curves. (05)
- **b)** Define: Line integral. Find work done if $\vec{F} = 2x^2j + 3xyk$ moving a particle in the *xy*-plane from (0,0) to (1,4) along the curve $y = 4x^2$.

c) Find the equations of tangent plane & normal line at the point (-2,1,-3) to the ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$.

Q.7 Attempt all questions (14)

- a) State Green's Theorem. Verify Green's Theorem for $\oint_C [(x^2 2xy)dx + (x^2y + 3)dy]$, where C is the boundary of the region bounded by the parabola $y = x^2$ and line y = x.
- **b)** Define Lagrange's equation. Solve (y+z)p+(z+x)q=x+y. (05)

Q.8 Attempt all questions (14)

- State Stokes's Theorem. Verify Stokes's theorem for the vector field $\vec{F} = (x^2 y^2)i + 2xyj$ in the rectangular region in the *xy*-plane bounded by x = -a, x = a, y = 0, y = b. (09)
- **b)** Define: Divergence. For which value of the component v_3 is $v = e^x \cos yi + e^x \sin yj + v_3k$ is solenoidal. (05)